First order integro-differential equations in Banach algebras involving Caratheodory and discontinuous nonlinearities
نویسندگان
چکیده
منابع مشابه
Impulsive Discontinuous Hyperbolic Partial Differential Equations of Fractional Order on Banach Algebras
This article studies the existence of solutions and extremal solutions to partial hyperbolic differential equations of fractional order with impulses in Banach algebras under Lipschitz and Carathéodory conditions and certain monotonicity conditions.
متن کاملStabilization and controllability of first-order integro-differential hyperbolic equations
In the present article we study the stabilization of first-order linear integro-differential hyperbolic equations. For such equations we prove that the stabilization in finite time is equivalent to the exact controllability property. The proof relies on a Fredholm transformation that maps the original system into a finite-time stable target system. The controllability assumption is used to prov...
متن کاملImpulsive Boundary-value Problems for First-order Integro-differential Equations
This article concerns boundary-value problems of first-order nonlinear impulsive integro-differential equations: y′(t) + a(t)y(t) = f(t, y(t), (Ty)(t), (Sy)(t)), t ∈ J0, ∆y(tk) = Ik(y(tk)), k = 1, 2, . . . , p,
متن کاملDhage iteration method for PBVPs of nonlinear first order hybrid integro-differential equations
In this paper, author proves the algorithms for the existence as well as the approximation of solutions to a couple of periodic boundary value problems of nonlinear first order ordinary integro-differential equations using operator theoretic techniques in a partially ordered metric space. The main results rely on the Dhage iteration method embodied in the recent hybrid fixed point theorems of D...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Electronic Journal of Qualitative Theory of Differential Equations
سال: 2005
ISSN: 1417-3875
DOI: 10.14232/ejqtde.2005.1.21